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Summary

Failure behavior results are presented from crash

dynamics research using concepts of aircraft elements

and substructure not necessarily designed or opti-

mized for energy absorption or crash loading con-

siderations. To achieve desired new designs incorpo-
rating improved energy absorption capabilities often

requires an understanding of how more conventional

designs behave under crash loadings. The experi-

mental and analytical data presented indicate some

general trends in the failure behavior of a class of

composite structures including individual fuselage
frames, skeleton subfloors with stringers and floor

beams without skin covering, and subfloors with skin

added to the frame-stringer arrangement. Although

the behavior is complex, a strong similarity in the
static and dynamic failure behavior of these struc-

tures is illustrated through photographs of the exper-

imental results and through analytical data of generic

composite structural models. The similarity in be-
havior gives designers and dynamists much informa-
tion on the crash behavior of these structures and

can guide designs for improving the energy absorp-
tion and crash behavior of such structures.

Introduction

The NASA Langley Research Center has been

involved in crash dynamics research since the early

1970's. For nearly 10 years the emphasis of the re-

search was on metal aircraft structures during the

General Aviation Crash Dynamics Program (refs. 1

to 13) and a transport aircraft program, the Con-

trolled Impact Demonstration (CID), which culmi-
nated in the remotely piloted crash test of a Boe-

ing 720 aircraft in 1984 (refs. 14 to 16). Since the

transport work, the emphasis has been on composite

structures, with efforts directed at developing a data
base for understanding the behavior, responses, fail-

ure mechanisms, and general loads associated with

composite material systems under crash loadings (see
fig. 1). Considerable work has been conducted to de-

termine the energy absorption characteristics of com-

posites (refs. 17 to 20), and the research indicates

that composites can absorb as much energy as, if

not considerably more than, comparable aluminum
structures. However, because of the brittle nature of

composites, attention must be given to designs that

will take advantage of the good energy-absorbing

properties in crash situations while providing the de-
sired structural integrity. To achieve desired new de-

signs requires an understanding of the behavior of

conventional designs under crash loadings.

The purpose of this paper is to present data
on the observed failure behavior from research con-

ducted using concepts of aircraft substructure not

necessarily designed (or optimized) for energy ab-

sorption or crash loading considerations. The ex-

perimental and analytical data indicate some general

trends in the failure behavior of a class of composite

structures that includes individual fuselage frames,
skeleton subfloors with stringers and floor beams but

without skin covering, and subfloors with skin over

the frame-stringer arrangement. Although the be-

havior is complex, a strong similarity in the static
and dynamic failure behavior of these structures is il-

lustrated through photographs of the damaged struc-

tures and through analytical data of generic com-

posite structural models. The similarity in behavior

gives designers and dynamists much insight into the
crash behavior of these structures and can be used to

great advantage in improving the energy absorption
and crash behavior of such structures.

Impact Dynamics Research Facility

Much of the information presented in this report

is the result of a research program to investigate the

impact response of metal and composite aircraft com-

ponents conducted at the Langley Impact Dynamics

Research Facility (IDRF). The IDRF (shown in fig. 2)

is the former Lunar Landing Facility, which was used

to train astronauts for moon landings. The facility

is 230 ft high and 400 ft long. In the early 1970's,

the structure was converted for crash testing full-

scale general aviation aircraft. Reference 21 provides

complete details of the facility and test techniques
for full-scale aircraft testing. Additionally, a 70-ft-

high Vertical Drop Test Apparatus used for full-scale

aircraft section, component, and/or seat testing is

shown in figure 3. Static testing machines and other

apparatus are also available at the facility for metal

and composite aircraft structural testing.

Analysis

To gain an understanding of the fundamental

physical behavior of complex structures, experi-
mental research with structures under crash load-

ings is generally accompanied by analytical predic-
tion/correlation studies whenever feasible. Thus,

various finite element codes that have capabilities for

handling the dynamic, large displacement, nonlinear

response of metal and composite structures are used
as tools in the research efforts.

The analytical results presented here were gener-

ated with a nonlinear finite element computer code

called DYCAST (DYnamic Crash Analysis of STruc-

tures (ref. 22) developed by Grumman Aerospace



Corporation with principal support from NASA and
the Federal Aviation Administration. The basic

element library consists of (1) stringers with ax-

ial stiffness only; (2) beam elements with 12 fixed

cross-sectional shapes typical of aircraft structures
with axial and torsional stiffnesses, and two bend-

ing and two shear stiffnesses; (3) isotropic and or-

thotropie membrane skin triangles with membrane

stiffnesses; (4) isotropie plate-bending triangles with
membrane and out-of-plane bending stiffnesses; and

(5) nonlinear translational or rotational spring ele-
ments that provide stiffness with user-specified force-

displacement or moment-rotation tables (pieeewise

linear). The spring element can be either elastic or
dissipative. The springs are useful to model crush be-

havior of components for which experimental or ana-

lytical data are available and/or whose behavior may

be too complex or time consuming to model other-
wise. An effort is underway to add curved composite

beam, composite plate, and curved shell elements to
the DYCAST element library.

Other analysis codes such as the NIKE and

DYNA codes developed at the Lawrence Livermore
National Laboratory, Livermore, California, and the

MacNeal-Schwendler Corporation MSC/DYNA ver-
sion of the DYNA code are used on selected prob-

lems in the composite impact research. Addition-

ally, through university grants other approaches to
efficient analysis techniques are being explored for

composite applications (see refs. 23 to 25). However,
as stated earlier, the analytical results of this paper

have been generated with the DYCAST code.

Test Specimens and Description

Full-Scale Aircraft

Metal aircraft structures. Langley Research
Center conducted three vertical drop tests of 12-foot-

long fuselage sections cut from an out-of-service Boe-

ing 707 aircraft to support transport research efforts.
Selected data on the crash behavior of the transport

aircraft sections (refs. 26 and 27) are included in

this paper to demonstrate important similarities in
the behavior of both metal and composite fuselage

structures. The fuselage sections were drop tested

at 20 ft/sec to measure structural, seat, and occu-

pant responses to vertical crash loads and to provide
data for nonlinear finite element modeling. The two

sections of interest were cut forward and aft of the

wing location. A phot0graph of the forward section

suspended in the Vertical Drop Test Apparatus at
the IDRF is shown in figure 4. The aft section con-

tained seats, anthropomorphic dummies, a data ac-

quisition system pallet, a power pallet, and camera
batteries. This test served two purposes: (1) to test

structural, seat, and occupant responses and (2) to

test the data acquisition system and instrumentation

to be used in the remotely piloted full-scale transport

crash test on the Controlled Impact Demonstration

(CID). The reader should refer to the particular re-
ports (refs. 14, 15, 16, 26, and 27) for more complete

descriptions of the test articles since such information

is not repeated in this report.

Composite aircraft structures. The IDRF

at Langley Research Center supported the Army
Advanced Composite Aircraft Program (ACAP) by

conducting the tests of two specially designed full-

scale composite aircraft structures (fig. 5). (See

refs.:28 and 29.) The sensitivity of the data preclude

their inclusion in this paper. However, two full-scale,

composite general aviation aircraft structures; two

complete wing sets; and landing gears have been
obtained for testing at the IDRF to add to the data

base being generated. One of the composite aircraft

fuselage specimens is shown in figure 6.

Composite Aircraft Components

Composite fuselage panel. As part of the Air-

craft Energy Efficiency (ACEE) Program, the static

and dynamic behavior of the lower fuselage compos-

ite structure was evaluated (ref. 30). Development

tests were performed on the composite structures

to verify that the composite structure, designed to

the same operating load as the metal design, could
have at least the same energy absorption capability

as aluminum structure. A photograph of the com-

posite fuselage panel in the static testing machine

is shown in figure 7. Load-displacement and failure

behavior determined for the corrugated frame/skin

test panel are included herein for comparison with

other composite structures. The frame/skin spec-

imen had a 117.5-in. radius (to outside skin), was

60 in. long by 30 in. wide, and had two corrugated
frames on 20-in. spacing. Fabrication techniques and

more complete details of the frame/skin panel are

given in reference 30.

Single composite frames. Various cross-

sectional shapes for fuselage frames are used in metal

aircraft and are often proposed for composite struc-

tures. Figure 8 shows sketches and photographs of
four of the more common geometries, Z-, I-, J-, and

C-cross-sectional shapes, of which circular frames

were fabricated for testing to add information to the

composite structures data base. To add out-of-plane
stability to the frame concepts (with the exception of

the Z-section frames), 2.25- or 3.5-in-wide skin mate-

rial was added, which enhanced the ease of testing of

both symmetrical and nonsymmetrical sections. The



Table I. Composite Frame Section Lay-Ups

Fuselage
frame
label

FR004I
FR005I
FR004J

FR005C
FR005C

Serial
number Configuration

I-section
I-section
J-section

C-section
C-section

Lay-up
(-t-45/0/90) s
(±45/0/90)28
(+45/0/90)2s
(+45/0/90)2s
(+45/0/90)2s

Weight, kg
1.443
1.996
1.853
1.229
1.229

0.08-in-thick, 16-ply skin with a [-}-45/0/9012s lay-
up was cocured with the 6-ft-diameter frames, which
have the lay-ups as indicated in table I. The frames
were constructed in two heights, 1.25 in. and 0.75 in.,
to investigate the effect of frame height on behavior
and responses.

One of the first geometries to be studied under
static and dynamic loadings was the Z-cross section.
A photograph of Z-cross section fuselage frames used
in the initial studies of the behavior of composite
structural elements under impact loads is shown in
figure 8(c). A Z-frame suspended in the drop appa-
ratus prior to testing is shown in figure 9. The appa-
ratus was constructed with guide rails, a rear metal

backstop, and a front Plexiglass sheet. During free-
fall the specimen was guided, and the front and rear
backstops prevented appreciable (but not all) out-of-
plane bending or twisting during impact and allowed
photographic or motion picture coverage through
the front Plexiglas plate. The 6-ft-diameter frames
were constructed using a quasi-isotropic lay-up of
280-5HA/3502, a five-harness, satin weave graphite
fabric composite material. The Z-cross section of the
frame was 3 in. high with a total width of 2.25 in.
and a thickness of about 0.08 in. Initial tests were

with 360 ° frames made from four 90° segments joined
with splice plates as shown in figure 8(c). Additional
tests were conducted with half-frames since the top
half of the complete frames were undamaged in the
tests.

The approach of studying simple structural ele-
ments and then moving to combinations of these ele-
ments in more complex substructures has been taken
in the development of a data base on the dynamic re-
sponse and behavior of composite aircraft structures.
The approach parallels the one used during the gen-
eral aviation and transport aircraft programs. Con-
sequently, three composite subfloor structures were
fabricated following the initial investigation of the Z-
frames discussed above.

Composite subfloors. A photograph of com-
posite subfloor specimens constructed with three of
the single Z-section frames similar to those that were
studied earlier is shown in figure 10. Pultruded J-
stringers connected the three frames through metal
clips and secondary bonding methods. Aluminum
floor beams tied the upper end of the frames together
to form the lower half of the subfioor. Notches in

the frames allowed the stringers to pass through the
frames. Two subfloors without skin were fabricated.

A third specimen had a +45 ° lay-up skin bonded
and riveted to the frames to form the lower fuselage
structure.

Results and Discussion

Experimental and analytical results from the
studies of full-scale aircraft structures, composite
fuselage panels, frames, and subfloors under static
and/or dynamic loadings are presented in figures 11
to 24. The photographs emphasize the failure behav-
ior of the composite and metal components, which
show a strong similarity in their behavior. The be-
havior is thought to be an important consideration in
the design of new structures for improving the energy
absorption and crash behavior of these components
and structural elements.

Full-Scale Metal Aircraft Structures

Experimental and analytical results from stud-
ies with full-scale transport aircraft sections (from
refs. 26 and 27) are presented in figure 11.

Dynamic tests. The resulting structural dam-
age to the transport aircraft structures from the
20 ft/sec vertical drop tests is shown in figures 11(a)
and (b). The damage to the transport sections was
confined to the lower fuselage below the floor. All
seven frames ruptured near the bottom impact point.
Plastic hinges formed in each frame along both sides
of the fuselage approximately 50° up the circumfer-
ence from the bottom contact point (see fig. ll(c)).



The crushing of the lower fuselage was approximately
22 23 in. at the front end and 18 19 in. at the rear for

the section forward of the wing (fig. ll(a)). For the

aft section (fig. ll(b)), the crushing was about 14 in.
at front and 18 in. at the rear. Although the air-

craft structures are metal and the failures discussed

above involve plastic deformations with some tearing
of the metal rather than brittle fracturing, the gen-

eral observed failure pattern and failure locations for

the transport fuselage sections will be shown to be

quite similar to those of the composite frames and
subfloors discussed later.

Analytical studies. A DYCAST model of the

forward section of the transport fuselage w_ gener-

ated to model the floor, two seats with lumped mass

occupants, and the fuselage structure to determine if

such a model could predict the response of the com-

plete section with fidelity. The finite element model

is shown in figure 12. Stiff ground springs simulated
the concrete impact surface. Each frame of the fuse-

lage below the floor was modeled with eight beam ele-
ments, and the floor and seat rails were also modeled

with appropriate beam elements. The fuselage struc-

ture above the floor (not expected to fail) was mod-
eled in less detail. Two triple-occupant seats were

modeled with four lumped masses connected by hor-

izontal stringers supported by four nonlinear springs

for the vertical legs. The mass of three occupants

was distributed on a 2:1 ratio, with the inboard seat

legs supporting two occupants and the outboard legs

supporting one occupant because of asymmetry of

the seat pan with respect to the legs.
A comparison of the analytical predictions of the

two-frame model and full-section experimental re-

sponses is shown in figure 13. As shown in the

figure, the correlation of vertical displacements and

wall/floor and dummy pelvis accelerations are con-
sidered good. Figure 14 shows the deformation pat-
tern of the two frame model. As may be noted, the

overall impression from the analytical model defor-

mation pattern is quite similar to the behavior seen

in the experiment with the full-section shown in fig-
ure 11. Thus, the full-section behavior was basically
contained in the two-frame model.

Full-Scale Composite Aircraft

Other than the two drop tests of the composite

helicopters conducted for the Army (refs. 28 and 29),

no full-scale composite aircraft have been tested yet

at the Langley Research Center as part of the com-

posite impact dynamics research. However, as men-

tioned previously, two full-scale composite general
aviation aircraft structures, two complete wing sets,

and landing gears are available for testing.

In the following sections, the composite impact

dynamics studies have taken the building block ap-

proach of using a sequence of tests and analyses that

begins with "simpler" elements and moves to more
"complicated" components or substructures. As

mentioned earlier, this approach was used in the gen-

eral aviation (GA) and transport programs, although

the GA data base was being concurrently developed

through full-scale testing. Full-scale crash tests us-

ing currently available composite aircraft specimens

and/or other full-scale composite structures are part

of the ongoing research program.

Composite Fuselage Panel Study

Figure 15 Shows the failure behavior and the

static load displacement data for the corrugated

frame/skin specimen from the ACEE program. Fig-

ure 15(a) indicates that the load increased linearly
to failure, whereupon the load dropped substantially

as a result of fracturing of the corrugated frames at

locations (0 ° and 6.2 °) near the center (loading re-
gion) of the panel. Additionally, some delamination
of the frame caps occurred during the loading. Once

the panel was removed from the test apparatus, the

snap-through condition of the skin was reversed, as
may be noted in figure 15(b). The fractures of the

corrugated frame and some delamination of the frame

caps, mentioned above, are the only visible damage
to the structure.

Composite Single Frame Studies

Static tests. Results from the static test of a

composite semicircular frame (ref. 31) with a Z-cross

section are presented in figure 16. A photograph of
the static test apparatus in figure 16(a) shows that

the splice plate was at the load point. Consequently,

the frame failed just outside the doubler splice plate

area by a complete fracture across the Z-section.
Load deflection data and the failure locations are

shown in figure 16(b). The load deflection data show

a saw-toothed behavior of loading and unloading.

The ioad increased linearly until initial failure, then
fell off to under 600 lb force. Subsequent loading of

the frame after initial failure is at a new, reduced

stiffness.. Second and third fractures occurred up

the side again at approximately 54 ° and 58 ° under

continued loading, as may be noted in the sketch

at the right of figure 16(b). Photographic data in

figure 16(c) show that the initial failure was induced

by a local buckling of the frame, which occurred at
about 18 ° from the bottom loading point outside the

splice plate area.

Static analytical studies. To demonstrate an-

alytically the apparent behavior of the frames under

4



load(exclusiveofthe localbucklingthat actuallyini-
tiatedthe failurein thestatictests),twoDYCAST
finite elementmodelsweregenerated.For easeof
analysis,a typicalI-sectionwasmodeledfrom the
specimensdescribedin thesection"SingleCompos-
ite Frames."Figure17(a)showsthe loaddisplace-
mentplotsfor the twomodels.In caseI, the frame
wasloadedat thetop andasimulatedgroundplane
(groundcontactsprings)resistedthe verticalmove-
mentof the frameduringloadapplication.A half
framewasmodeledusing34I-sectionbeamelements
with boundaryconditionsimposedat the bottom
nodeto accountfor thesymmetricalsituation.The
topnodewasconstrainedto allowonlyverticaldis-
placement,thussimulatingthe effectof a verystiff
flooracrosstheframediameter.Thestaticloadwas
slowlyincreaseduntil the inputfailurestrainfor the
material(0.0086)wasexceededat thepoint of load-
ing,andfailurewasindicated.

A secondDYCAST model, caseII, was run
whereinthebottompoint of theframewasmodeled
with two shortskinsegmentsto representthe dif-
ferentconditionof thestructurefollowingtheinitial
failureoftheframe.Thisconditionwill bediscussed
furtherrelativeto the compositesubfloortest with
theskinnedsubfioorspecimen.Essentially,theframe
loadincreasesalongthecurveof caseI to thepoint
of initial failureat the bottomof the frame. After
theframefractures,thestructurehaschangedto one
considerablyweakened--downto the bendingstiff-
nessof theskinaloneat that location.Theloadthen
dropsto the lowercurve,caseII, whichrepresents
thestiffnessof thesection,whichhasbeenweakened
on the bottomendof the frame. The loadcontin-
uesalongthecurveof caseII until secondaryfailures
occurat otherlocationson theframecircumference.

An examinationof the caseI normalizeddistri-
butionof thebendingmomenton theframe,shown
in figure17(b),providesa betterunderstandingof
thefailurebehavior.Maximummomentis indicated
(just prior to failure)to beat the0° location,with
secondarymaximumsbetween4-50o-60 ° from the
bottom contact area. The locations correlate well

with the failure locations in the experiment with the

Z-frame. As may be recalled, the composite corru-

gated frame/skin fuselage panel specimens from the

ACEE Program also showed failure location near the

0 ° load region, although the panel represented only

the extreme bottom segment of the fuselage with

clamped boundaries on the curvature ends of the

specimen. The maximum moment on the frame/skin

segment was at the 0° or loading region of the panel,
similar to the distributions for the frame models dis-

cussed above.

The normalized bending moment distribution on
the broken frame for case II is presented in fig-

ure 17(c). As may be noted, the distribution is

quite similar to the case I initial model results in

figure 17(b). The failure locations are at the max-
imum bending moment locations predicted, about

4-45 ° , which are somewhat lower than the maximum

bending moment locations shown in the initial model

of the unbroken frame. The agreement between the

behavior predicted by the two models and the exper-

imental results, however, is still considered good.

To show the effect of the frame diameter on

the moment distribution, the diameter of the frame

model was increased by a factor of two (to 75 in.).
The normalized moment distribution was found to be

essentially identical to the smaller diameter frame re-

sults of figures 17(b) and 17(c). Moment distribution

in terms of geometry and load for a point-loaded ring

(ref. 32) shows that the maximum moment will occur

at the same angle for different diameters. This sug-

gests that the larger transport sections should prob-

ably have failure locations identical to the smaller
diameter frames.

Additionally, to show the effect of floor location

(simulated by constraints in the analytical model) on

the moment distribution of the frame, the constraints

and load application points were moved from the

diameter to positions that resulted in 120 ° , 90 ° , and

60 ° frame segments below the floor. The bending
moment distributions for these models under the

same applied load are given in figure 17(d). The
results indicate that the distribution is still similar

to the full 180 ° frame distribution, but the location

of the maximum moment away from the contact

region falls below those locations on the half-circle

model. Also, the maximum moment for the same

applied load is less than that of the full half-circle
model. Since the arc length of the frame decreases

with the lower floor locations, the moment arm of

the applied load is also decreased, thus resulting in
reduced moments for a given load. However, the

magnitude of the maximum moment at the contact

region was still approximately 2.1 greater than the

magnitude of the other circumferential maximums

prior to any failure.

Furthermore, a comparison of the analytical cases

(fig. 17(a)) with the actual static load deflection

of the Z-section (fig. 16(b)) indicates very similar

load deflection behavior patterns, as discussed above.

Although the Z-frame had no skin, if the ends jam

together (as they did in several cases), the boundary

is effectively between the skin-stiffened case and a

guided boundary. Thus, the predicted failure in the
simple beam-frame model at about 50°-55 ° agrees



well with the 54° and 58° failure locationsin the
experimentwith the Z-sectionframe.

Withoutapriori knowledgeof themannerof the
failurediscussedabove,the initial formulationof a
finiteelementmodelwouldprobablynot incorporate
the necessary failure behavior for the frames. How-

ever, knowing the pattern of behavior can enable the

analysts to formulate adequate finite element models

to predict dynamic responses, including failure and

crash loadings. Additionally, such information is im-

portant to designers of new structures so that they

can design for impact loads on such structural ele-

ments of an aircraft fuselage.

Dynamic tests. Information from reference 33

on the dynamic studies of the response of compos-

ite frames is shown in figure 18. As shown in fig-

ure 18(a), the splice plates joining the segments of the
frame are 45 ° up the circumference from the point of

impact. As noted in figure 18(b), complete failures
(fractures) of the Z-section frames occurred at the

bottom and approximately 60 ° from the bottom. It

appears that the presence of the splice plates moved

the top failure points up a few degrees (to about the

60 ° locations).

Dynamic analytical studies. Experimental

and analytical model results for the composite Z-

frame subjected to a 20 ft/sec impact are shown

in figure 19. The results show the first 15 msec
of the experimental acceleration for the floor and

two analytical model predictions. In one analysis

model, the in-plane deformations were constrained

to the plane of the frame, whereas in the other the

frame was free to twist and bend out of plane. As

shown in the figure, the agreement between the "free"

model and the experiment is good for the initial peak

load. Later the agreement is not as good because
the backstop and clear fences in the experiment,

which were not modeled, began to provide support

to the twisting and bending frame. The in-plane
model results are about 60 percent higher than the

experiment and "free" model results. The results

emphasize the importance of modeling the "exact"

experimental boundary conditions to understand the

dynamic (and static) behavior of structures under

crash-type loadings. Unfortunately, mixed boundary

conditions often exist or occur in the experiments.

Composite Subfloor Studies

Two static and two dynamic tests were conducted

on the three composite subfloor specimens. With

the skeleton subfloor, both static and dynamic tests
to destruction were conducted. With the skinned

subfloor, a nondestructive static test, followed by a

dynamic test to failure, was conducted.

Static tests. Experimental results (ref. 34) for
the skeleton subfloor specimen following a static test

are shown in figure 20. As shown in figure 20(a),
failures on the 3 Z-section frames occurred at 15 dis-

crete locations. Unlike the unnotched single Z-frame,

the failures in this specimen occurred at notches

(which served as stress risers) in the frame, through

which the stringer passed. However, as shown in fig-

ure 20(b), the failures were still near the point of load

application (approximately 12°-14 °) and at other cir-

cumferential locations of approximately 55 ° . In the

absence of skin material, twisting and out-of-plane

bending occurred with the frames. The stringers had

minimal effect on the subfloor response, with the ex-

ception of maintaining the lateral spacing of the three
Z-frames.

Dynamic tests. A photograph of a skeleton sub-

floor after impact onto a concrete surface at 20 ft/sec
is shown in figure 21. In the dynamic test of the skele-

ton subfloor, fractures were produced at notches in

the frames (fig. 21(a)) and, as shown in figure 21(b),

also near the point of impact (about 14 ° because of

the splice plate) and at 2 other locations up the cir-

cumference of the frames (45 ° and 78°), totaling 15

fractures for alI 3 frames. The impact energy ex-
ceeded the energy absorbcd by the local fractures,

and the floor bottomed out in the impact. Fig-

ure 21 (c) shows normalized circumferential strain dis-

tribution measured on the flange of the first (end)
frame during the dynamic test just before first fail-

ure. A comparison of the distribution to the mo-

ment distribution of figures 17(b) and (c) shows es-

sentially identical shape between the single frame and
skeleton frame distributions. Maximum values at 0 °

andat approximately 50 ° to 55 ° agree well with the

analytically predicted locations on the frame.

Impact results for the subfioor with skin after

an impact of 20 ft/sec are shown in figure 22. A

photograph of the subfloor specimen after the test

is shown in figure 22(a). Points of failure of the

frames in this specimen are indicated in figure 22(b).

Again the points of failure are near the impact point

(within 12 °) and circumferentially at about 56 ° up
both sides of the middle and rear frames and at

45 ° , 11.3 °, and 22.5 ° on the front frame. It was

observed that the subfloor impacted first on the
front area, possibly explaining the 11.3 ° and 22.5 °

fractures being different from those at the other

locations. Again all three frames were involved in the
failures. Some delamination of the frames from the

skin was evident, but the skin remained intact. A

normalized circumferential strain distribution (just
prior to first failure) measured on the skin at the

first (end) frame during the dynamic test is shown in

6



figure 22(c). A comparison of the distribution with
the moment distributions of figures 17(b) and (c)
and the strain distribution in figure 21(c) shows
essentially identical shape as the single frame and
skeleton frame distributions. As was the case for

the skeleton subfloor, maximum values at 0° and
at approximately 50° to 55 ° agree well with the
analytically predicted locations on the frame.

As mentioned previously in the frame studies,
once the frames fail at or near the point of impact,
the broken ends of the frame often jammed together
and moved upward in a guided manner. In the sub-
floor structure, the frames may still fail completely
across the section, but the skin remains intact and

serves as a much less stiff boundary condition for
the broken frames as the deflection increases. Little

energy is involved in snapping the skin through as
the load increases on the structure. (See ref. 35 on
snap-through of composite arches.) In this manner,
the structural stiffness of the frame and skin before

fracture changes to only the skin after frame frac-
ture. The analytical models discussed in the section
"Static Analytical Studies" (p. 4) simulated this type
of behavior.

Analytical studies. The contribution of the
skin to the stiffness of the section with the non-

symmetrical frames is illustrated in figure 23. Static
load deflection data for the unskinned subfloor and

the skinned subfloor along with the DYCAST predic-
tions are shown in the figure. It can be noted that
the stiffness of the skinned subfloor is approximately
three times the stiffness of the skeleton subfloor, thus
the contribution of the skin to the structure is to

maintain in-plane deflections of the nonsymmetrical
Z-section and prevent any substantial twisting of the
frames. Out-of-plane bending and twist were allowed
in the skeleton subfloor predictions. As might be
expected, if the skeleton subfloor load (with three
frames) is reduced by a factor of three, good correla-
tion with single frame load deflection data is evident.

General Observations

The response behavior determined during the
studies of full-scale aircraft sections, fuselage panels,
frames, and subfloors are summarized in figure 24.
The normalized moment distribution on a represen-
tative frame of the various specimens is shown in fig-
ure 24(a) along with the failure locations (fig. 24(5))
from static and/or dynamic tests. The visual impres-
sion is quite striking among the various specimens.
It is suggested from the results that for the simpler
frames to the more complex subfloors and full-scale
sections, a strong similarity is evident in the failure
behavior of the structures. The structures share in

common the generally circular or cylindrical shape,
the vertical loading situations, and what appears to
be a similar pattern of failure behavior. Analytical
models of frame structures under vertical loads have

moment distributions with maximums at the point

of loading and at approximately 45 ° to 50° (depend-
ing on boundary conditions) around the circumfer-
ence from the ground contact point. Failures of the
structures were noted at these same locations. Such

observations can help dynamists gain a clearer un-
derstanding of what to expect from such structures

in crash loading situations, and they can help design-
ers of new structures account for the vertical crash

loads and allow increased energy absorption to be in-
cluded in the new designs. Additionally, the observa-
tions can help analysts improve modeling of aircraft
structures for predicting the failure responses and be-
havior under crash situations. The latter task is a

difficult and challenging one, not only for composite
structures but for metal structures as well. Stud-

ies are currently underway to improve the analysis
capabilities of code and to add composite elements
to finite element libraries such as the DYCAST pro-
gram. In addition, new analysis approaches are being
explored through grants to universities as an exten-
sion of Langley Research Center's efforts.

Concluding Remarks and Observations

Some important failure behavior results from re-
search with composite full-scale aircraft sections,
composite structural elements, and subfloors have
been presented. Observations on the failure behav-
ior of these structures have been made and discussed,

and analytical results have been included to help ex-
plain some of the behavior noted.

From the observations made in the overview, the
following conclusions are made:

1. Comparing test results on simple representative
structural elements with those from more com-

plex components provided insight into the local
and global structural responses and behavior of
complex aircraft structures.

2. Relatively simple analytical models provided gen-
erally good correlation with experiments. How-
ever, guidance from experimental data was re-
quired to allow adequate or improved analytical
models to be formulated.

3. Commonality in the failure behavior of full-scale
aircraft sections, composite panels, frames, and
subfloors with and without skin was found.

4. General locations of failures appear to occur at
the same structural regions among the specimens
as a result of similar geometry (cylindrical shape),

7



loading (vertical), and moment (stress/strain)

distribution on the structures under vertical loads.

5. Noted failures were located in the same regions

as the maximums in the moment (strain) distri-

bution on the structures.

6. The shape of the distribution of the moment was

independent of the size (diameter) of the frame or

component. The loads, however, that produced

the failures varied with the structural size.

7. Loading the frames having floors attached at dif-

ferent circumferential locations produced simi-

lar moment distributions, but the maximum mo-

ment locations away from the contact region (as

expected) were lower in circumferential position

than the full half-circle frame results. Maximum

moments for the lower floor attachment locations

were lower in magnitude (for a given load) than

for the full 180 ° frame.

Based on the conclusions drawn for the research

presented in this paper, the following observations

are also summarized:

1. The general similarity of the failure behavior can

(a) assist designers and dynamists to anticipate

how the structures probably will fail, (b) provide

guidance on how and where to incorporate and/or

optimize improved energy absorption into new

structural designs, and (c) aid analysts to more

adequately model the structures for predicting

failure and load behavior under crash situations.

2. To analytically predict, in a dynamic loading sit-

uation, the complex failure events and the loads

that initiate failures in composite structural el-

ements and subcomponents is a challenge, but

possible; however, guidance is often required from

experiments.

3. Composite curved beam, composite plate, and

shell elements are being developed and included

in finite element code to improve the capability

to analyze composite structures.

NASA Langley Research Center

Hampton, VA 23665-5225

August 22, 1990
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Figure 4. Metal transport section suspended in Vertical Drop Test Apparatus.
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Figure 8. Concluded.
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Figure 10. Skeleton and skinned subfloor specimens.
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Figure 14. Deformed model showing analytical failure of metal transport section.
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Figure 15. Static results for composite frame/skin panel studies.
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Figure 16. Static results from tcsts of single composite Z-frame.
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